Super Resolution and Face Recognition Based People Activity Monitoring Enhancement Using Surveillance Camera

نویسندگان

  • Tõnis Uiboupin
  • Gholamreza Anbarjafari
  • Pejman Rasti
چکیده

Resümee Super Resolution and Face Recognition Based People Activity Monitoring Enhancement Using Surveillance Camera Due to importance of security in the society, monitoring activities and recognizing specific people through surveillance video camera is playing an important role. One of the main issues in such activity rises from the fact that cameras do not meet the resolution requirement for many face recognition algorithms. In order to solve this issue, in this work we are proposing a new system which super resolve the image. First, we are using sparse representation with the specific dictionary involving many natural and facial images to super resolve images. As a second method, we are using deep learning convulutional network. Image super resolution is followed by Hidden Markov Model and Singular Value Decomposition based face recognition. The proposed system has been tested on many well-known face databases such as FERET, HeadPose, and Essex University databases as well as our recently introduced iCV Face Recognition database (iCV-F). The experimental results shows that the recognition rate is increasing considerably after applying the super resolution by using facial and natural image dictionary. In addition, we are also proposing a system for analysing people movement on surveillance video. People including faces are detected by using Histogram of Oriented Gradient features and Viola-jones algorithm. Multi-target tracking system with discrete-continuouos energy minimization tracking system is then used to track people. The tracking data is then in turn used to get information about visited and passed locations and face recognition results for tracked people.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Resolution Face Recognition in Surveillance Systems

In surveillance systems, the captured facial images are often very small and different from the low-resolution images down-sampled from high-resolution facial images. They generally lead to low performance in face recognition. In this paper, we study specific scenarios of face recognition with surveillance cameras. Three important factors that influence face recognition performance are investig...

متن کامل

Hallucinating Faces

In most surveillance scenarios there is a large distance between the camera and the objects of interest in the scene. Surveillance cameras are also usually set up with wide elds of view in order to image as much of the scene as possible. The end result is that the objects in the scene normally appear very small in surveillance imagery. It is generally possible to detect and track the objects in...

متن کامل

Face Recognition on Low Quality Surveillance Images, by Compensating Degradation

Face images obtained by an outdoor surveillance camera, are often confronted with severe degradations (e.g., low-resolution, lowcontrast, blur and noise). This significantly limits the performance of face recognition (FR) systems. This paper presents a framework to overcome the degradation in images obtained by an outdoor surveillance camera, to improve the performance of FR. We have defined a ...

متن کامل

Improving long range and high magnification face recognition: Database acquisition, evaluation, and enhancement

In this paper, we describe a face video database, UTK-LRHM, acquired from long distances and with high magnifications. Both indoor and outdoor sequences are collected under uncontrolled surveillance conditions. To our knowledge, it is the first database to provide face images from long distances (indoor: 10–16 m and outdoor: 50–300 m). The corresponding system magnifications range from 3· to 20...

متن کامل

Automatic Tracking, Super-Resolution and Recognition of Human Faces from Surveillance Video

Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual’s face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016